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We have reconsidered the Bell-Lavis model of liquid water and investigated its relation to its isotropic
version, the antiferromagnetic Blume-Emery-Griffiths model on the triangular lattice. Our study was carried
out by means of an exact solution on the sequential Husimi cactus. We show that the ground states of both
models share the same topology and that fluid phases �gas and low- and high-density liquids� can be mapped
onto magnetic phases �paramagnetic, antiferromagnetic, and dense paramagnetic, respectively�. Both models
present liquid-liquid coexistence and several thermodynamic anomalies. This result suggests that anisotropy
introduced through orientational variables play no specific role in producing the density anomaly, in agreement
with a similar conclusion discussed previously following results for continuous soft core models. We propose
that the presence of liquid anomalies may be related to energetic frustration, a feature common to both models.
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I. INTRODUCTION

Water is one of the most intriguing fluids in nature due to
its peculiar properties, relative abundance, and relevance for
life. In the liquid phase, several of its properties are recog-
nized as anomalous, since they are unusual in liquids with
the same molecular size as H2O. Among its anomalous fea-
tures, the best known is probably the increase in density with
temperature that happens from the melting point up to 4 °C,
at atmospheric pressures. The density anomaly exists in a
large region of the pressure-temperature phase diagram and
forms a line of temperatures of maximum density �TMD�,
which has negative inclination and enters the supercooled
metastable regime above 40 MPa �1�. Other important
anomalous quantities are the basic thermodynamic deriva-
tives: heat capacity CP, thermal expansion �P, and isother-
mal compressibility kT, whose magnitudes increase as the
temperature is lowered toward the supercooled regime, at
lower pressures �2–4�.

Different thermodynamic scenarios have competed to de-
scribe the presence of anomalies in liquid water. Two of
them, the stability limit conjecture �5� and the second-
critical-point hypothesis �6�, assign the origin of these phe-
nomena to thermodynamic instabilities in the supercooled
regime. These would be due to the retracing of the gas-liquid
spinodal to positive temperature, in the former case, or to a
second critical point, related to the end of a liquid-liquid
phase transition at high pressures, in the latter case. The
second-critical-point hypothesis has received a lot of atten-
tion lately because liquid-liquid phase transitions, which
were originally found in simulations of realistic models of
water �6�, were also found in simulations of SiO2 �7� and in
high-temperature x-ray diffraction experiments of phos-
phorus �8,9�. In addition to these results, there is some ex-
perimental evidence of a phase transition between two amor-
phous phases of water �10,11� as well as for other substances
�12�, which might possibly be related to the low-temperature
continuation of the liquid-liquid phase transition. The third

possibility is the singularity-free scenario �13,14�, which is
based on a set of thermodynamical equations connecting the
increase in magnitude of kT, CP, and �P to the presence of a
TMD line of a negative slope in the pressure vs temperature
plane.

Despite the lack of consensus on the thermodynamic de-
scription behind liquid anomalies, it is widely accepted that
the hydrogen bond is responsible for them in water. At am-
bient pressure, hydrogen bonds create a fully bonded, tetra-
hedral structure in ice Ih, which is less dense than the liquid
phase. Since the latent heat of fusion is not enough to break
all bonds, these structures are partially preserved in the liq-
uid. At the same time, the existence of a “normal liquid”
structure, which is less bonded and more dense than the
former structure, creates a free energy competition between
different liquids that results in a density anomaly �15�.

Different kinds of interactions have been used to imple-
ment the above description in statistical fluid models. Many
reproduce the density anomaly and other waterlike proper-
ties. Models could be grouped into two main categories: iso-
tropic and orientational. In both groups, continuous as well
as lattice models, more tractable in analytical calculations,
and easier to simulate, have been presented.

Core-softened continuous and lattice models, and lattice-
volume-dependent Potts state models belong in the first
group. In the so-called core-softened models it is considered
that the relevant feature is the presence of two characteristic
lengths: the range of the usual attractive interaction and the
range of a soft repulsive interaction, in addition to the hard
core �16–25�. This additional interaction would be respon-
sible for the competition between fluids of different densi-
ties. A few lattice versions of the core-softened models were
implemented with nearest-neighbor and next-nearest-
neighbor interactions in one �1D� �26� and two dimensions
�2D� �27�. The core-softened models may present density
and other anomalies and/or liquid-liquid coexistence, de-
pending on the form of the repulsive soft core and on the
presence of an attractive interaction. A different lattice statis-
tical model was presented by Sastry and collaborators: par-
ticle states were represented by Potts variables with isotropic
bonding, coupled to an ad hoc variation of molecular volume*vera@if.usp.br
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�13,14�. The latter was used as an example of the singularity-
free scenario.

A second group of models emphasizes the orientational
character of the hydrogen bond interactions, which for a long
time have been accepted as responsible for water anomalies.
In the 2D Mercedez-Benz model �28� water molecules are
represented by particles with three bonding arms, with no
distinction of donors or acceptors, in order to mimic hydro-
gen bonds. Water thermodynamic and solvation anomalies
and also liquid-liquid transitions may be present, under dif-
ferent approaches �29–32�. A lattice version of the Mercedez-
Benz model was an early proposal of Bell and Lavis �33�,
which was investigated in several papers �34–36�. An orien-
tational 3D lattice gas model which allowed for a distinction
between donor and acceptor hydrogen bond states was inves-
tigated by Roberts and Debenedetti �37,38�. A simpler 2D
orientational lattice gas was proposed more recently �39–41�.
All these models were shown to exhibit a density anomaly
and liquid polymorphism.

In the case of the lattice models, isotropic or orientational,
several ad hoc features were added, in order to mimic differ-
ent physical microscopic aspects. In some cases, the denser
liquid states are energetically destabilized with a weakening
factor that lowers bond strength whenever another molecule
comes closer to bonding molecules �37,42–45� or, equiva-
lently, a slightly repulsive van der Waals interaction
�39,41,46�. In other cases, an additional number of q non-
bonding states is assigned to each water molecule, in order to
force an entropy increase in the unbonded and disordered
liquid �13,14,37,44,45,47�. As mentioned previously, there
are also cases in which particle states typical of low tempera-
tures are associated with lower local density �13,14�. In some
studies, several of the above structural and energetic ele-
ments are present simultaneously.

Despite the fact that most of the mentioned models dis-
play some features of liquid water, it is still not possible to
ascertain the relevant microscopic aspects that lead to a den-
sity anomaly.

In the present study we give a further step in the direction
of looking for minimum requirements for a water model. We
give a detailed analysis of the properties of the Bell-Lavis
model, the simplest known lattice model for a bonding fluid,
and compare them to those of its isotropic version, a frus-
trated antiferromagnet.

The Bell-Lavis �BL� model was proposed almost 40 years
ago. It can be interpreted as a triangular lattice version of the
Mercedez-Benz model �29�. In the original paper �33�, the
properties of the BL model were calculated on a triangle,
named by the authors as an approximation with short-range
order, and it was shown to present a density anomaly. Later,
the first approach was improved with the use of three sublat-
tices, named as an approximation with long-range order. Un-
der this approximation, a new phase emerged: a bonded,
low-density phase, which the authors identified as solid �34�.
The discovery of the new phase led to the conclusion that the
liquid density anomaly was in a metastable region, where the
solid was stable. Subsequently, an explicit form for the gas-
liquid coexistence line, in stable and metastable regimes, was
calculated using a symmetry transformation, in the context of
the first-order approximation with short-range order. It was

then possible to derive analytical expressions for the thermo-
dynamic response functions, which presented behavior simi-
lar to that of water �48�, with numerically reasonable ratios,
for both the temperatures of minimum isothermal compress-
ibility and of maximum density, to the gas-liquid critical
temperature �48�. These findings represented interesting fea-
tures of the model, despite the metastability of the liquid
phase. A real space renormalization group �35,36� study was
also undertaken, and indicated that the solid-liquid transition
was critical, as well as that the TMD occurred in the solid
phase, in contradiction with the previous results.

In this paper we reconsider the BL model, through an
analysis of the model’s ground state and phase diagrams, and
try to understand which features are relevant for the appear-
ance of a density anomaly, by considering a simpler version
of its Hamiltonian. To achieve this goal, we have chosen to
study the isotropic version of the BL Hamiltonian, which is
equivalent to the antiferromagnet Blume-Emery-Griffiths
�BEG� model on the triangular lattice �49�, and to compare
the properties of both models using equivalent parameters.
We found similarities between the two models’ properties,
particularly concerning the ground state and the density
anomaly.

The thermodynamic properties have been obtained on the
Bethe lattice �50�, using the recursive approach in a sequen-
tially constructed Husimi cactus �51�. This methodology is
appropriate for the study of systems with energetic frustra-
tion, as has been discussed elsewhere �51,52�, and becomes
equivalent to Bell’s long-range order approximation �34�, in
which three sublattices are considered.

We have abandoned the interpretation of the less dense
and bonded phase as solid. Such an interpretation requires
that the system remain liquid at very high pressures, at low
temperatures, which does not seem physically reasonable.
We have therefore chosen to name the two phases as liquid,
denoting the less dense and bonded phase as low-density
liquid �LDL�, and the disordered liquid as high-density liquid
�HDL�. The liquid-liquid transition could become a transition
between two amorphous states, at low temperatures. How-
ever, the distinction between the amorphous solid and liquid
states is based on viscosity �53� and, so far, there are no
studies on diffusion for the BL model.

This paper is organized as follows. In Sec. II the Bell-
Lavis model is presented, its Hamiltonian is built using Potts
and spin representations, and a comparison is made with the
antiferromagnetic Blume-Emery-Griffiths model. In Sec. III
the recursive approach to the Husimi cactus is introduced
and the description of a frustrated spin-1 system is given
�51�. An expression for the grand potential and the mean
value of some relevant quantities in the interior of the Hu-
simi cactus are presented, in the same section. The thermo-
dynamics and the liquid structure of both models are ana-
lyzed in Sec. IV and concluding remarks are left for the last
section.

II. THE BELL-LAVIS MODEL: AN ANISOTROPIC
ANTIFERROMAGNETIC BEG MODEL

The Bell-Lavis model is defined on a triangular lattice
whose vertices can be either occupied by a molecule, or
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empty. Each molecule has three bonding arms separated by
120° and two different orientations. The energetics of the
model is simple and includes van der Waals interaction and
hydrogen bonds between neighboring molecules. Hydrogen
bonding depends on specific molecular orientations and hap-
pens when the bonding arms of neighboring molecules point
to each other. Figure 1 shows examples of �a� bonded and �b�
unbonded molecules. The states of a particle are represented
through occupational, �i, and orientational, �i

ij, variables. �i
indicates the presence or absence of a particle at site i ��i
=1 or 0, respectively� and �i

ij stands for the presence or
absence of a bonding arm pointing from site i to site j ��i

ij

=1 or 0, respectively�. With these definitions, the effective
Hamiltonian of the system, in the grand canonical ensemble,
can be written as

HBL = − �
�i,j�

�i� j��vdW + �hb�i
ij� j

ji� − ��
i

�i, �1�

where �vdW refers to the strength of the van der Waals inter-
action, �hb�0 to the strength of the hydrogen bond interac-
tion, which is attractive by definition, and � to the chemical
potential. The first sum is performed over all pairs �i , j� of
nearest neighbors, and the second over all sites i.

Alternatively, this effective Hamiltonian can be written in
a spin-1 representation �35�. This will be useful, since it per-
mits one to relate the BL and BEG models naturally. To
simplify the calculations, the effective Hamiltonian can be
split between the lattice triangles as

HBL =
1

2 � hBL =
1

2 � �hvdW + hhb + h�� , �2�

where the summation is over all triangles in the lattice and
the factor 1/2 avoids double counting of links on adjacent

triangles. In Eq. �2� we separate the contributions coming
from van der Waals interactions, hydrogen bonds and chemi-
cal potential, by defining the terms hvdW, hhb, and h�. Now,
let us assume that the state of each site k in a triangle is
represented by a spin Sk which assumes integer values for
different particle orientations �see Fig. 1�, and 0 for a hole.
As will be seen later, it is necessary to use three
sublattices—a, b, and c—to distinguish the possible ordered
states. With these definitions the van der Waals term hvdW
becomes

hvdW = − �vdW�Sa
2Sb

2 + Sb
2Sc

2 + Sc
2Sa

2� . �3�

In order to obtain hhb it is useful to define the spin projectors

P��Sk� =
1

2
�Sk

2 � Sk� , �4�

which give 1, if the spin Sk is equal to the projector’s sub-
script, or 0, if different. Using the labels of sublattices and
the spin values of particle orientations as in Fig. 1, hhb and
h� of Eq. �2� become

hhb = − �hb�P−�Sa�P+�Sb� + P−�Sb�P+�Sc� + P−�Sc�P+�Sa��
�5�

and

h� = −
�

3
�Sa

2 + Sb
2 + Sc

2� . �6�

Note that every site is shared by six triangles, and the factor
of 1/3 has been used here to absorb the contribution of the
chemical potential in a single triangle in Eq. �2�. Using Eqs.
�3�–�6�, and grouping the terms by the order of spin cou-
pling, we get

hBL =
�hb

4
�SaSb + SbSc + ScSa� − ��vdW +

�hb

4
�

	�Sa
2Sb

2 + Sb
2Sc

2 + Sc
2Sa

2� −
�

3
�Sa

2 + Sb
2 + Sc

2�

−
�hb

4
�Sa − Sb��Sb − Sc��Sc − Sa� . �7�

As noted previously by Young and Lavis �35�, the Hamil-
tonian of Eq. �7� is obtained by adding an anisotropic inter-
action given by

hani =
�hb

4
�Sa − Sb��Sb − Sc��Sc − Sa� . �8�

to the BEG Hamiltonian

hBEG = − J�SaSb + SbSc + ScSa� − K�Sa
2Sb

2 + Sb
2Sc

2 + Sc
2Sa

2�

+



3
�Sa

2 + Sb
2 + Sc

2� . �9�

The parameters of the BEG Hamiltonian are related to the
fluid parameters of the BL model through

J = −
�hb

4
� 0, �10a�

a

b c

−1

1

a

b c

−1

1

a

1

cb

−1

a

−1

b c

1

(b)

(a)

FIG. 1. �Color online� Interactions on the Bell-Lavis water
model. �a� Water molecules forming a hydrogen bond with a pair
interaction energy of −��vdW+�hb� and �b� molecules interacting
only through van der Waals attraction with a pair interaction energy
of −�vdW.
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K = �vdW +
�hb

4
, �10b�


 = − � . �10c�

From Eq. �10a�–�10c� it follows that hydrogen bonds in the
BL model are in some way connected to antiferromagnetism,
since J=−�hb�0. This relation will be discussed further in
Sec. V.

To allow the comparison with the equivalent isotropic
model we define an interpolating Hamiltonian

hI��� = hBEG + �hani, �11�

which reproduces the BEG or the BL Hamiltonian on the
triangular lattice, by setting � equal to 0 or 1, respectively
�54�.

In addition, it will be convenient to define two interpolat-
ing parameters: the reduced interaction strength

��� =
K − ��J�

�1 + 3���J�
�12�

and the reduced chemical potential

����� = −



�1 + 3���J�
�13�

with J and K defined as in Eqs. �9�. Thus, for the BL model
we have �1�=�vdW /�hb and ���1�=� /�hb, while for the
BEG model Eqs. �12� and �13� yield �0�=K / �J� and ���0�
=−
 / �J�. Since these parameters have been chosen to univo-
cally describe the corresponding ground states of the two
models, the � dependence of ��� and ����� will be left
implicit. From now on, reference to  and �� implies use of
Eqs. �12� and �13�, with �=1 for analysis of the BL model,
and �=0 for analysis of the BEG model.

A first insight into the similarities of the models can be
obtained by inspecting possible spin states on a single tri-
angle. Assuming that null temperature microstates are com-
posed of the ordered repetition of triangle configurations
�with the allowed degeneracies�, one may calculate the cor-
responding ground state grand potentials. This assumption
leads to four possible stable fluid phases for the BL model, at
null temperature �gas �G�, high-density liquid �HDL�, low-
density liquid �LDL�, and intercalated �I��, which may be
mapped onto magnetic phases displayed by the BEG model
�paramagnetic �P�, frustrated paramagnetic �FP�, antiferro-
magnetic �AF�, and antiquadrupolar �AQ��. Possible configu-
rations for the different phases we propose are illustrated in
Fig. 2. The high-density liquid phase is in fact highly degen-
erate. The free-energies per particle of the two HDL configu-
rations represented in the figure are easily shown to be equal.
These two and every configuration derived from the LDL
structure by filling up some fraction � of the empty sites
coexist at =−�� /6. From now on we will take advantage of
the relation between the two models, and all the references to
thermodynamic phases of the BEG model will use the fluid
notation.

The spectra of the interpolating Hamiltonian HI are shown
in Table I, with fluid nomenclature indicated in the first col-

umn. Ground state phase transition lines can be obtained
from comparison of the grand potentials of Table I and it can
be noted that the T=0 phase diagrams of the two models
present the same topology, as shown in Fig. 2. The HDL and
gas phases exist at some region of ��, for all values of .
There is a triple point at ���=2,=1 /3� indicating the ap-
pearance of a low-density liquid phase. This phase will be
stable at some interval of �� for �1 /3 and will coexist
with the gas phase for interaction strengths in the range −1
��1 /3, until the appearance of another triple point at
���=0,=−1�. This triple point is related to the stability of
the intercalated phase, and occurs only when the van der
Waals interaction is repulsive and stronger than the hydrogen
bond interaction in the BL model, i.e., when the overall in-
teraction between molecules is repulsive.

Despite the topological equivalence between the ground
states of the BL and BEG models, there is an important dif-
ference between the LDL phase and the antiferromagnetic
phase which is caused by the anisotropic interaction term in
Eq. �8�. As can be seen in Table I, the only states that have
been changed by this term were the low-density liquid and
the unbonded low-density liquid �both antiferromagnetic
states�, whose “microscopic” grand potentials per triangle
differ by 
H=−4�J=��hb. By making �=0 these states
merge into the antiferromagnetic state, indicating that the
major effect of the anisotropy is to distinguish between low-
density bonding and nonbonding states, thus breaking the
degeneracy of the antiferromagnetic states. This is illustrated
in Fig. 1, in which all states represented are antiferromag-
netic, whereas for the liquid, only �a� represents bonded
states, of lower energy, while �b� represents nonbonding
states, of higher energy.

III. EXACT SOLUTION ON THE BETHE LATTICE

The BL and BEG models are studied here using a recur-
sive approach �52� to the Bethe lattice �50�. The Bethe lattice

FIG. 2. Ground state of the Bell-Lavis and the antiferromagnetic
Blume-Emery-Griffiths models �with a single triangle taken as a
unitary cell� in terms of reduced interaction strengh  and reduced
chemical potential ��. Representative configurations of the Bell-
Lavis model are shown on the sides of the diagram, with straight
lines representing hydrogen bonds. The degenerate HDL �FP� phase
is represented by two of the many possible configurations �see text
for phase names�. Dotted lines indicate the parameters �=1 /4,
1/10, and 0� studied in this work.
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is known to capture the essential features of different models,
particularly when the usual mean field treatment fails �50�.
On the recursive approach, the system is studied in an infi-
nite hierarchical tree, which here is the sequential Husimi
cactus, and the thermodynamical properties are calculated on
the interior of this tree by iterating a set of recursion relations
until a fixed point is reached.

A triangular lattice may be represented by a Husimi cac-
tus of coordination q=6. This is achieved by letting the
branches of the cactus grow indefinitely, and attaching the
base sites of two branches to each vertex of the central tri-
angle. Figure 3 shows two branches of the Husimi cactus that
were grown for three generations: one constructed with the
usual symmetrical procedure and the other through a sequen-
tial procedure �51�. While in the symmetrical procedure all
generations grow simultaneously from the central triangle, in
the sequential procedure generations starting on different
sublattices are grown in a sequence which specifies the order
in which sublattices are added in the growth process. Here
we adopt this order as a→b→c→a.

In the next section we present a set of recursion relations
that describe a general spin-1 Hamiltonian on the sequential
Husimi cactus and give an expression for the grand potential
of this system in the interior of the cactus.

A. Recursive approach to a general spin-1 Hamiltonian
on the sequential Husimi cactus

Let us consider the general Hamiltonian h�Sa ,Sb ,Sc� on a
single triangle. The partition function of a sequential Husimi
cactus with M generations, and growth starting in generation
0 on sublattice a of a central triangle, is given by

�0,1,2
�M� = �

Sa,Sb,Sc

e−�h�Sa,Sb,Sc��0
2�a,Sa��1

2�b,Sb��2
2�c,Sc� ,

�14�

where �=1 /kBT. �k�l ,Sl� is the partition function of a
branch of the cactus starting at a site of sublattice l on gen-

eration k, in state spin sl, whose child branches will grow
sequentially for m−k generations. Due to the cactus’s self-
similarity, the partition functions of branches on sucessive
generations satisfy the following equations:

TABLE I. Ground state of the effective Hamiltonian in Eq. �11�, under the hypothesis discussed in the
text. Stable and unstable configurations are shown with fluid names, microscopic grand potentials �using fluid
and magnetic parameters in different columns�, degeneracy �, density �, the number of hydrogen bonds per
particle �hb, the equivalent quantity for the BEG model 
� f, and illustrative spin representations. The
unbonded LDL is emphasized because it is unstable in the BL model but is stable, and equal to the LDL, in
the antiferromagnetic BEG model.

HI�Sa ,Sb ,Sc�
Fluid phase Fluid Magnetic � � �hb 
� f �Sa ,Sb ,Sc�

Stable phases

Gas 0 0 1 0 0 0 �0,0,0�
HDL −�hb−3�vdW−� J−3K+
 6 1 1 1 �+,−,��
LDL − �1+��

2 �hb−�vdW− 2
3� �1+2��J−K+ 2

3
 3 2/3 3/2 3/2 �+,−,0�
Intercalated − 1

3� 1
3
 6 1/3 0 0 �0, � ,0�

Unbonded LDL − �1−��
2 �hb−�vdW− 2

3� �1−2��J−K+ 2
3
 3 2/3 0 3/2 �−, + ,0�

Unstable phases

Densely ordered −3�vdW−� −3J−3K+
 2 2/3 0 −3 /2 �+, + ,+�
Lightly ordered −�vdW− 2

3� −J−K+ 2
3
 6 1 0 −1 �+,0 ,+�

a

b c

a b

a

ba

c

a
c

2

2

1

2

2

c

a
b

c

c

b
c

b

c

a

a

b

c

b

c

c

b
c

2

2 3

3

3

3

b

3
3

1

(b)

(a)

FIG. 3. �a� Symmetrical and �b� sequential constructions of the
branches of the Husimi cactus.
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�k�a,Sa� = �
Sb�,Sc�

e−�h�Sa,Sb�,Sc���k+1
2 �b,Sb���k+2

2 �c,Sc�� ,

�15a�

�k�b,Sb� = �
Sc�,Sa�

e−�h�Sa�,Sb,Sc���k+1
2 �c,Sc���k+2

2 �a,Sa�� ,

�15b�

�k�c,Sc� = �
Sa�,Sb�

e−�h�Sa�,Sb�,Sc��k+1
2 �a,Sa���k+2

2 �b,Sb�� .

�15c�

Normalization of the probabilities on each sublattice reduces
the initial nine equations, resulting from the three possible
states for Sl, to six equations. The definition

�k�l,Sl� = Bk�l�xk�l,Sl�Sl
2

�16�

may be used to rewrite Eqs. �15a�–�15c� as a dynamical map-
ping on the partial partition functions xk�l ,Sl�, given by

xk�a,Sa� =
f �k+1,k+2��a,Sa�

f �k+1,k+2��a,0�
, �17a�

xk�b,Sb� =
f �k+1,k+2��b,Sb�

f �k+1,k+2��b,0�
, �17b�

xk�c,Sc� =
f �k+1,k+2��c,Sc�

f �k+1,k+2��c,0�
. �17c�

The functions f �m,n��l ,Sl� are

f �m,n��a,Sa� = �
Sb�,Sc�

e−�h�Sa,Sb�,Sc��xm
2Sb�

2

�b,Sb��xn
2Sc�

2

�c,Sc�� ,

�18a�

f �m,n��b,Sb� = �
Sc�,Sa�

e−�h�Sa�,Sb,Sc��xm
2Sc�

2

�c,Sc��xn
2Sa�

2

�a,Sa�� ,

�18b�

f �m,n��c,Sc� = �
Sa�,Sb�

e−�h�Sa�,Sb�,Sc�xm
2Sc�

2

�a,Sa��xn
2Sb�

2

�b,Sb�� .

�18c�

Note that xk�l ,0� and Bk�l� do not appear in Eqs. �18� due to
definition �16�. The functions Bk�l�=�k�l ,0� satisfy some re-
cursion relations which will be used later to obtain the grand
potential. For l=a this relation is

Bk�a� = Bk+1
2 �b�Bk+2

2 �c�f �k+1,k+2��a,0� . �19�

The set of Eqs. �16� are iterated sequentially, starting from
large M values, until a fixed point is found. The existence of
more than one fixed point, which can be obtained using dif-
ferent initial values in Eqs. �16�, indicates the presence of
various phases. The region of stability of each phase is es-

tablished by comparing grand potentials. In the neighbor-
hood of any fixed point we will have, for k�M, xk�l ,Sl�
=xk−1�l ,Sl�=x�l ,Sl�. From now on the subscript k will be
avoided on the partial partition functions x�l ,Sl� and it will
be assumed that their values are obtained on the interior of
the cactus tree.

An analytical expression for the grand potential may be
obtained by following Gujrati’s proposal �50�, in which it is
assumed that the grand potential of the cactus is additive in
the contributions from surface and bulk sites. Moreover, it is
also assumed �50� that the surface grand potential of a cactus
with M generations is equal to the grand potential of a cer-
tain number r of cactus with M −1 generations, with r being
the ratio of the numbers of surface sites on trees with suc-
cessive M. For the q=r+1=6 symmetrical Husimi cactus,
the bulk grand potential per unit area, �, is given by

� =
�

A
=

�0
�M� − r�0

�M−1�

�a0
, �20�

where �=3 is the difference, in site number, between one
cactus with M generations and the r=4 cactus with M −1
generations, and A=�a0 with a0 being the area of a single
site. For the sequential Husimi cactus this quantity will be
slightly different because each branch starts in different gen-
eration. Using the growth definition adopted here, � for the
sequential Husimi cactus is written as

� =
�

A
=

�0,1,2
�M� − 2�3,1,2

�M−1� − 2�3,4,2
�M−2�

3a0
. �21�

To obtain an expression for � in terms of the partial partition
functions xk�a ,Sa�, it is convenient to write

�0,1,2
�M� = B0

2�a�B1
2�b�B2

2�c��
Sa

x2Sa
2
�a,Sa�f�a,Sa� , �22�

where the subscript k may be omitted in f�a ,Sa� because k
�M.

The grand potential per unit of area is obtained using the
relation �=e−�� and applying Eqs. �19� and �22� on Eq.
�21�. After some algebra, this procedure leads to

� = −
kBT

3a0
ln� 	

l=a,b,c

f�l,0�

�
Sl

x�l,Sl�3Sl
2� . �23�

Finally, the pressure at given temperature T and chemical
potential � is simply P=−�. In what follows we introduce
the mean value of some quantities necessary for the analysis
of Sec. IV.

B. Mean values In the interior of the cactus

To obtain the mean value of some properties it will be
useful to write the probability of finding a molecular con-
figuration with given spin values Sa, Sb, and Sc in the interior
of the cactus:
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P�Sa,Sb,Sc�

=
e−�HI�Sa,Sb,Sc�x2Sa

2
�a,Sa�x2Sb

2
�b,Sb�x2Sc

2
�c,Sc�

�
Sa�,Sb�,Sc�

e−�HI�Sa�,Sb�,Sc��x2Sa�
2
�a,Sa��x

2Sb�
2
�b,Sb��x

2Sc�
2
�c,Sc��

.

�24�

This definition implies that the mean value of any function
g�Sa ,Sb ,Sc� will be simply


g�Sa,Sb,Sc�� = �
Sa,Sb,Sc

g�Sa,Sb,Sc�P�Sa,Sb,Sc� . �25�

Thus, the density on the central triangle is given by

� =
1

3 �
l=a,b,c


Sl
2� , �26�

and the mean energy per particle of the interpolating Hamil-
tonian �Eq. �11�� is

u��� =
1

�

hI��� − h�� , �27�

with hI��� and h� from Eqs. �11� and �6�, respectively.
A quantity that is relevant for the particular case of the BL

model is the number of hydrogen bonds per particle:

�hb = −
1

�hb�

Hhb� . �28�

At this point it is interesting to define a quantity similar to
�hb, in the context of the BEG model. Before doing this, let
us note that the mean number of nearest neighbors per par-
ticle is

�NN =
1

�

Sa

2Sb
2 + Sb

2Sc
2 + Sc

2Sa
2� , �29�

and that using this definition Eq. �27� becomes

u�� = 1� = uBL = − �hb�hb − �vdW�NN �30�

for the BL model, with �=1, and

u�� = 0� = uBEG = − �J��−
1

�

SaSb + SbSc + ScSa�� − K�NN

�31�

for the antiferromagnetic BEG model, with �=0.
By comparing Eqs. �30� and �31� one realizes that the

quantity


� f = −
1

�

SaSb + SbSc + ScSa� �32�

has an energetic meaning in the BEG model that is equiva-
lent to the density of hydrogen bonds in the BL model. It is
worth mentioning that 
� f presents the desired behavior at
T=0, i.e., �hb=
� f for all stable states of Table I, and that the
unbonded low-density liquid becomes equal to the LDL
phase in the BEG model. Nevertheless, the definitions �hb
and 
� f are not equal for unstable configurations at T=0,
e.g., for the densely oriented and lightly oriented states in

Table I �hb=0 but 
� f =−1 in the latter and 
� f =−3 /2 in the
former.

Another relevant extensive property is the entropy per
particle, which can be calculated numerically from the ex-
pression of the grand potential in Eq. �21� and is written as

s = −
1

N

��

�T
= −

1

�

��

�T
, �33�

where N is the number of particles in a system with fixed
area A.

IV. PHASE DIAGRAMS AND THERMODYNAMIC
PROPERTIES

To begin our analysis we compare the finite-temperature
pressure-temperature phase diagrams of the two models for
three values of reduced interaction strength =1 /4, 1/10, and
0, as shown in Fig. 4. These values were chosen in the inter-
val 0��1 /3, which satisfies the stability condition for the
LDL phase and the restriction of an attractive van der Waals
interaction �or biquadratic spin coupling, in the BEG model�.
The reduced units defined in Table II are used. Phase transi-
tions, temperatures of maximum and minimum density, and
the locus of null entropy are shown with different lines and
symbols in this figure.

In spite of the perfect mapping of the t=0 phase diagram
topologies, temperature introduces some distinctions be-
tween the thermodynamic behavior of the two models. The
first difference we note is that the anisotropic interaction in
the BL model favors the LDL, since this phase is stable at
larger temperatures and pressures, in comparison to the anti-
ferromagnetic phase of the BEG model. This may be related
to the behavior of the entropy. The latter can be inferred by
applying the Clausius-Clapeyron equation to the liquid-
liquid coexistence line. At higher temperatures, both models
present a more entropic HDL phase, as compared to the LDL
phase. At lower temperatures, however, the BL model pre-
sents a more entropic LDL, as compared to HDL, which may
explain the improvement of the stability of the LDL. This
result is somewhat unexpected because in the ground state
analysis of Sec. II it was found that the number of states of
the LDL phase, in the BL model, was half the degeneracy of
the BEG model.

Both models exhibit a coexistence line between the gas
and HDL phases, ending in a critical point. The position of
this point, �tc , pc�, goes to lower temperature and pressure as
the intensity of the van der Waals interaction �biquadratic
spin coupling� is lowered. In the BL model this shift pro-
duces noticeable changes in the phase diagram, since the
critical point concerned crosses the gas-LDL transition, be-
coming metastable at some � in the interval 1 /4��
�1 /10.

A density anomaly was searched for in the HDL phase.
Lines of maximum density are shown in Fig. 4 and display
similar behavior for equal , in both models. The TMD line
meets the LDL-HDL coexistence, at null temperature and at
pressure p=1. An important point to note is that, in the BL
model, the lines of maximum densities are always in the
metastable HDL phase. As to the BEG model, the TMD oc
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FIG. 4. Reduced temperature vs pressure phase diagrams of the Bell-Lavis �left� and antiferromagnetic Blume-Emery-Griffiths �right�
models compared with reduced interaction strength  values 1/4, 1/10, and 0. Phases are indicated in fluid notation as G �gas�, HDL
�high-density liquid�, and LDL �low-density liquid�. Phase coexistences are represented by a line and the critical point of the coexistence
between gas and HDL is marked with a square. Note that an unfilled square has been used to indicate the metastability of this point in �c�
and �e�. The loci of stable maximum, metastable maximum, and metastable minimum density in the HDL phase are shown with thick dotted,
thin dotted, and dash-dotted lines, respectively. A line connected with triangles indicates the temperatures, on each graphic, below which the
entropy in the HDL phase is negative.
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curs in a stable HDL phase, for =1 /4, and partly in stable
and partly in metastable regions of the HDL phase, for 
=1 /10 and 0.

Lines of minimum density were also found for both mod-
els, at lower temperatures, in the metastable HDL phase �see
Fig. 4�.

For =1 /4, the BL metastable TMD line has a negative
inclination when it meets the gas phase, at low pressures.
This result is in accordance with a previous study by Bell
and Lavis �Ref. �33��, in which a few curves of density, as
functions of temperature, at fixed pressure, are shown.

For =1 /10, the line of minimum density is shifted to
higher temperatures and the TMD line returns to lower tem-
peratures, at low pressures. In the case of the BEG model,
the derivative of the TMD line changes its sign twice, retrac-
ing toward higher temperatures, just before meeting the gas
phase.

For =0, the lines of maximum and minimum density
merge into a single curve, at a minimum of that line. A
similar behavior has been observed with differerent orienta-
tional models �see Fig. 4 of Ref. �37� and Fig. 5 of Ref.
�44��. In both BEG and BL models, a single locus of extre-
mum densities appears at some value of  between 1/10 and
0, probably at a higher value of  for the BEG model, due to
the proximity of the two lines shown in Fig. 4�d�. Under the
=0 condition the BEG model corresponds to the antiferro-
magnetic Blume-Capel model.

Analogously to other cases, the analytical solutions from
Bethe-like approaches �55� may present a region in the phase
diagram with unphysical solutions of negative entropy. We
observe such a region in the metastable HDL, for all the
investigated values of , as shown in Fig. 4. By inspecting
these regions of negative entropy, it can be concluded that
the observed minimum in density is unphysical in both mod-
els, at least within the approximation used in this work.

A. The �=1 Õ4 case

From now on let us consider the case =1 /4 in detail.
Figure 5 displays the density vs temperature phase diagrams.
Only phase coexistence lines, both stable and metastable,
TMD lines, and the triple point have been shown, for clarity.

In the BL model, the density anomaly occurs in a meta-
stable regime and a reentrance can be noted in the metastable
continuation of the gas-HDL coexistence, when the TMD
line encounters it. The null temperature limit of the meta-
stable TMD line is at density �0�=0.976�0.016, which is

compatible with the value �0=0.9763, found by Lavis for the
t=0 and p=1 limits �33�. The coexistence between LDL and
HDL is very thin and occurs mostly at densities larger than
0.7. Near to the triple point there is an azeotropic point, at
which two regions of coexistence meet. This point is related
to the existence of a region with reversed relative densities,
in the liquid phases, and corresponds to a very small region
in which the derivative of the coexistence line dpcoex /dt, is
positive.

In the BEG model the TMD line meets the gas-HDL
phase coexistence in a stable regime and a reentrance can be
noted in this coexistence too, as shown in Fig. 5�b�. The null
temperature limit of the TMD line happens at a density �0�
=0.89�0.025. The LDL-HDL coexistence lies at lower tem-
peratures and lower densities, when compared to the equiva-
lent liquid-liquid coexistence, in the BL model. Again, near
to the triple point there is an azeotropic point that can be
visualized in Fig. 6. In the BEG model, the region of re-

TABLE II. Definition of the reduced variables used for the Bell-
Lavis and antiferromagnetic Blume-Emery-Griffiths models.

BL BEG

t kBT /�hb kBT / �J�
p Pa0 / ��hb−3�vdW� Pa0 / ��J�−3K�
kt ��hb−3�vdW�kT /a0 ��J�−3K�kT /a0

cv cV /kB cV /kB

cp cP /kB cP /kB
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FIG. 5. Reduced temperature vs density phase diagram of the �a�
Bell-Lavis and �b� antiferromagnetic Blume-Emery-Griffiths mod-
els with the reduced interaction strength value =1 /4. Labels are
the same used in Fig. 4. Phase transitions and the metastable con-
tinuation of the coexistence between gas and HDL are shown with
thick and thin lines, respectively. The temperature of maximum
densities and the triple point are shown with dotted and dash-dotted
line, respectively.
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versed densities in the LDL-HDL coexistence is larger, cor-
responding to dpcoex /dt�0 in a wider pressure interval.

At the t=0 limit, the LDL density at gas-LDL coexistence
goes to 2/3, for both models, whereas the metastable continu-
ation of the gas-HDL coexistence line yields density 1/2. The
density 2/3 was used in the ground state analysis of Sec. II,
in order to predict the existence of the LDL phase. This
analysis provided the values p=0 and 1 for the gas-LDL and
the LDL-HDL transitions, respectively, which are the same
values found in the phase diagrams of Fig. 4. However, from
the Husimi cactus calculations, the t=0 limit for the LDL
density at the LDL-HDL coexistence line is �LDL
=0.95�0.005. On the HDL side we have found �HDL
=0.98�0.0005. These densities are somewhat different from
the values �LDL� =0.8963 and �HDL� =0.9763, found at t=0 in
the approximation used by Lavis �34�. For the BEG model,
the corresponding densities are �LDL� =0.75�0.03 and �HDL�
=0.83�0.02.

In Fig. 7 structural properties in the HDL phase of the
models are compared at equivalent pressures as functions of
temperature. At null temperature, the quantities of both mod-
els converge to the same values, except for the entropy at
small pressures. A density anomaly is present for all pres-
sures p�1, but the temperature of maximum density reaches
denser states in the BL model. Concomitant with the density
increase, there is a steep decrease in the density of hydrogen
bonds �hb and the corresponding quantity in the BEG model,

� f. This decrease is less steep in the BEG case, accompa-
nying a smaller density increase. The entropy per particle is
higher for the BEG model, generally, but at higher pressures
�p�1� and at the null temperature limit, it converges to a
finite value that is identical in both BL and BEG models.
This residual entropy is associated with the degeneracy of
the ground state, which allows for several configurations to
present the same free energy in this region.

The behavior of thermodynamic response functions in the
HDL phase are compared for both models in Fig. 8. Isother-
mal compressibilities, shown in Figs. 8�a� and 8�b�, present
maxima at pressures p�1, which increase in magnitude as

pressure p=1 is approached. The isobaric heat capacities also
present peaks whose positions are dislocated to lower tem-
peratures, accordingly. The isovolumetric heat capacities dis-
play maxima at low pressures, with peak size decreasing as
pressure is increased, and eventually disappearing on ap-
proaching p=1.

V. DISCUSSION

We have shown that a line of maximum densities exist in
a wide region of pressures and temperatures for both the BL
and the BEG models �see Fig. 4�, with reduced interaction
strengths in the range

0 �  � 1/4. �34�

We emphasize the meaning of the above inequality. The 0
� condition reflects the requirement of a physically rel-
evant attractive van der Waals interaction. At the other end,
the condition �1 /4 guarantees the stability of the LDL
phase at t=0 ��1 /3; see Fig. 2�.

The existence of the LDL phase seems to be a necessary
condition for the presence of a density anomaly in the BL
and BEG models, because it indirectly creates a free energy
competition between two liquid structures: a normal and a
bonded HDL structure. The normal HDL structure occurs at
higher pressures, while the bonded HDL arises as a meta-
stable liquid, in the region of stability of the LDL and at low
pressures �p�1�. The “new” bonded HDL structure appears
to “borrow” some properties of the LDL phase. This idea is
further discussed in what follows.

A. Liquid-liquid coexistence

The stability of the LDL phase is easily established if one
looks at the ground state Gibbs free energy. At null pressure
and t=0, the free energy per particle is given by g�p=0, t
=0�=u and the gas will coexist with the liquid phase of
lower energy. Inspection of Table I shows that the LDL phase
has lower energy than the HDL phase if the energy of each
hydrogen bond is at least three times the energy of the van
der Waals interaction. For systems under this condition, as
the pressure increases, there will be a point at which work
performed by the compression suppresses the free energy
difference between the different liquids. At this point, i.e., at
p=1, the system passes through coexistence, and enters the
HDL liquid phase.

For finite temperatures, both models present a narrow
liquid-liquid phase transition as shown in the density vs tem-
perature phase diagrams of Figs. 5 and 6. In the case of the
BL model, this transition has been a matter of controversy. It
was found in an early study by Lavis to be of first order, in
an approximation scheme with three sublattices �33�, but
subsequent studies �36� based on the real space renormaliza-
tion group yielded a second-order phase transition. More re-
cently, Patrykiejew et al. �56� investigated, through Monte
Carlo simulations, a modified version of the BL model, to
which a repulsive three-body interaction was added. The
main result of this work was that the transition between liq-
uid phases occurred through a discontinuity in the specific
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FIG. 6. Reduced temperature vs density phase diagram of the
antiferromagnetic Blume-Emery-Griffiths model shown in Fig. 5 in
the neighborhood of the triple point. Labels are the same used in
Figs. 4 and 5.
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heat, which would correspond to a second-order phase tran-
sition according to Ehrenfest’s classification �57�. Those
simulations included the original BL model, with �vdW /�hb
=1 /4, discussed in this study �see Fig. 4�a� in Ref. �56��.

In spite of this result, it is possible that the HDL-LDL
transition of the BL model may represent another example of

a weakly first-order phase transition, as in the antiferromag-
netic three-state Potts model on the triangular lattice �58�, or
may even not exist. In order to clarify this question, addi-
tional studies are necessary, either use of a methodology that
allows one to distinguish between second- and weakly first-
order transitions �59�, such as short-time dynamics �60�, or
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FIG. 7. Values of structural quantities, at the molecular level, of the Bell-Lavis �right� and the antiferromagnetic Blume-Emery-Griffiths
models compared for the reduced interaction strength =1 /4. From top to bottom we show �a� and �b� the density, �c� the number of
hydrogen bonds per particle, �d� the quantity 
� f, and �e� and �f� the entropy per particle.
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investigation of the histograms of a chirality order parameter
�58�, which in the BL model corresponds to the anisotropic
term in Eq. �8�.

B. Anomalous behavior in the HDL phase

The metastability of the TMD line seems to be a major
deficiency of the BL model as a model for liquid water. Nev-

ertheless, some of the results coming from Patrykiejew’s �56�
Monte Carlo simulations suggest that the line of density
anomalies meets the gas-HDL coexistence line in a stable
region. Figure 4�a� of that work �56�, the density vs tempera-
ture phase diagram for the BL model, at =1 /4, can be com-
pared to our results; see Fig. 5�a�. In both cases, the HDL
density along the gas-HDL coexistence line presents an in-
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FIG. 8. Thermodynamic response functions of the Bell-Lavis �left� and the antiferromagnetic Blume-Emery-Griffiths �right� models
compared for the interaction strength value =1 /4, at constant pressure. The isothermal compressibility kt and the constant pressure cp and
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version of its slope, which represents one of the boundaries
of the reentrant region.

The condition of a density increase with temperature
along the coexistence curve is equivalent to an upper bound
for the thermal expansion coefficient. The slope of the liquid
density function ��T , P� along the Pcoex�T� coexistence line,
in the direction of increasing temperature toward the critical
point can be expressed as �coex�=sin����kT−cos�����.
Where ����T , P� is the angle between the Pcoex�T� coexist-
ence line and the T axis, kT is the isothermal compressibility
and � the isobaric expansion coefficient. Taking the liquid as
denser and less entropic than the gas �i.e., 0���� /2� it
follows that �i� if a TMD line touches the Pcoex�T� coexist-
ence line, the liquid density, at coexistence, must be an in-
creasing function of temperature, at the crossing point; �ii� if
the liquid density increases with temperature along the coex-
istence line, it is possible, but not necessary, that the coex-
istence line encounters the line of maximum densities; and
�iii� inversely, if the liquid density decreases with tempera-
ture along the coexistence line, �coex��0 and ��0, i.e., the
coexistence line cannot cross any region of anomalous den-
sity behavior.

Our Bethe lattice results are in accordance with these cri-
teria, and the meeting of the TMD line with the liquid den-
sity at coexistence �see Fig. 5� seems to coincide with the
maximum liquid density, in the metastable regime �for the
HDL�. In Patrykiejew’s Monte Carlo simulations, there are
no data on the TMD, but the �stable� � vs T phase diagram
displays a maximum for the liquid density, indicating that
there might, in fact, exist a stable TMD line crossing that
region.

In both the BL and the BEG models, the anomalous in-
crease in density, at lower temperatures and for p�1, is
accompanied by a steep decrease in the number of hydrogen
bonds �or 
� f, in the BEG model� as well as by a large
increase in the entropy per particle, as can be seen in Fig. 7.
These features are emphasized in the metastable HDL phase
of the BL model. Thus the anomalous liquid in the region
limited by the TMD line may be called a bonded HDL, to
distinguish it from the normal HDL, which occurs at higher
pressures �p�1� and temperatures �t� tTMD�. As stated be-
fore, the bonded HDL structure is similar to the LDL, in the
sense that it is less dense and more bonded than the normal
HDL structure. Nevertheless, the bonded structured liquid
has the same symmetry as the HDL phase �paramagnetic�
and does not have the sublattice distinction that is character-
istic of the LDL �antiferromagnetic� phase. For this reason,
one cannot localize the network of bonds in the bonded
structure, or specify the sublattices that are filled or empty, as
in the LDL.

The bonded and normal HDL structures present different
mechanisms for increasing the system’s entropy, as tempera-
ture rises. In the normal HDL structure, entropy is gained
with an increase in the number of spatial arrangements of
molecules, i.e., by increasing the molecular volume. As for
the bonded HDL structure, entropy is gained, in spite of the
decreasing molecular volume, due to the increase in the
number of configurations for the hydrogen bond network �or
in the 
� f coupling network, in the case of the BEG model�
and frustration plays an important role. Frustration prevents

new bonds from being created as particles are inserted to
increase the density. Thus, while the number of hydrogen
bonds �
� f� per particle decreases, the number of bonds per
unit “volume” is almost constant �results not shown�, yield-
ing a sharp rise in the number of bond configurations and
thus of entropy. But bonded and normal HDL structures have
the same symmetry, so that the density of the bonded struc-
ture eventually becomes equal to that of the normal structure,
as temperature rises, and the TMD line may be considered as
the midpoint of a continuous change between the two struc-
tures, in the same liquid phase.

The effect of pressure on the bonded HDL structure can
be deduced by noting that pressure itself contributes to de-
crease the molecular volume. Thus, at higher pressures �but
still below p=1� the change from the bonded to the normal
structure is more favorable, and the position of the TMD line
is shifted to lower temperatures, tending toward t=0 at p
=1. The structural parameters of the liquid are also affected,
and the absolute rates of variation in density, entropy, and
number of hydrogen bonds are significantly increased as p
=1 is approached from below �see Fig. 7�. In the case of the
normal HDL liquid, the role of pressure is the opposite of the
former, yielding smaller absolute rates of variation of those
quantities.

Comparison of the BEG and BL models �Fig. 7�a� and
7�b�� shows that the BEG model presents a smoother density
variation, accompanied by less abrupt variations in 
� f, as
compared to �hb of the BL model. Entropy, on the other
hand, presents higher rates of variation for the BEG model.
These features are related to the fact that, for a pair of neigh-
boring molecules, there are more states compatible with a

� f coupling than with a hydrogen bond. Because of this
“flexibility” of the BEG model, a lower density increase is
enough to maximize the entropy on the network of 
� f cou-
plings. For the same reason, 
� f tends to a limiting value, at
higher temperatures, which is larger than the limiting value
for �hb.

Our data for the model susceptibilities can also be dis-
cussed in terms of the competition between two structures.
Figures 8�a� and 8�b� display isothermal compressibilities in
accordance with the criterion put forward by Sastry et al.
�13�, which states that the presence of a negatively inclined
TMD line implies decreasing isothermal compressibility, at
the same pressure. The maxima in kt are displaced toward
smaller temperatures with increasing heights in the neighbor-
hood of p=1. The same behavior is observed in cp. The
maxima observed on these two functions are related to large
fluctuations in the molecular volume and in entropy, and are
consistent with the competition between two structured liq-
uids in the same thermodynamic phase. Although these fluc-
tuations in volume and entropy are increasing while ap-
proaching p=1 at t=0, they are not related to a second
critical point because the isovolumetric specific heat, which
is proportional to fluctuations in energy, does not increase in
the same region, as shown in Figs. 8�e� and 8�f�

C. Frustration

The importance of frustration in the BL model is easily
recognizable when the Hamiltonian is written in a spin-1
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representation, as in Eq. �7�, since the linear spin coupling is
seen to be antiferromagnetic.

It is usually accepted that the prototype of an energetically
frustrated system is the antiferromagnetic Ising model on the
triangular lattice. This model has been studied at zero mag-
netic field by Wannier �61�, who found a paramagnetic phase
at all temperatures, without any phase transition at finite tem-
peratures. In addition, Wannier’s solution predicts a residual
entropy at null temperature. Both the BL and the antiferro-
magnetic BEG models are reduced to the antiferromagnetic
Ising model in the infinite-pressure limit, when the lattice
becomes completely filled. This is readly seen from Eq. �7�:
except for the linear spin coupling, the other terms of the
Hamiltonian become configuration independent for density
�=1. Our results are consistent with Wannier’s predictions,
since at very high pressures both models presents a residual
entropy in the ground state of the HDL phase �see Figs. 7�e�
and 7�f��, and no phase transition at finite temperature.

We propose an extension of the application of the concept
of frustration associated with the antiferromagnetic spin-1/2
Ising model on the triangular lattice to spin-1 systems such
as the ones treated in this study. For the BL model, the main
effect of frustration is that it provides a natural restriction for
the formation of a complete hydrogen-bonded network of
molecules on the full lattice �or, analogously, of an antifer-
romagnetically coupled net of integer spins, in the BEG
model�. Considering the frustrated interactions to be “stron-
ger” than the unfrustrated van der Waals interactions �i.e.,
that inequality �34� is satisfied�, the appearance of a bonded
structure of lower density ��1 at lower pressures is to be
expected. The density anomaly which arises from the com-
petition between the bonded and normal liquids may thus be
assigned to frustration.

In order to further develop our ideas on the possible role
of frustration, let us consider a different orientational lattice
gas model �OLG� analyzed previously by one of us �39�. In
the OLG model, molecules with four bonding and two inert
arms sit on a triangular lattice. Energetic ingredients include
hydrogen bonds and isotropic van der Waals interactions.
Fully bonded nets are possible for a low-density state, as
well as for the high-density state, and the model may thus be
considered unfrustrated. However, the LDL phase is stable
only if the “van der Waals” interaction is repulsive. Only in
this case does the model present a liquid-liquid phase transi-
tion and a TMD line. It must be noted, however, that, unlike
the BL model, the OLG model presents HDL and LDL
phases of the same symmetry, with a liquid-liquid line end-
ing in a critical point. The BL model presents two liquids
with different symmetries and no critical point.

Despite the differences between the BL and the OLG
models, it is possible to extend the idea of frustration to
include the latter, by considering that repulsive van der
Waals interactions introduce restrictions on the formation of
a fully hydrogen-bonded network of molecules on the filled
lattice. It would then be possible to classify all such systems
as frustrated: either lattice frustrated, as would be the case of

the BL and BEG models, or energetically frustrated, as in the
case of the OLG model. Such a classification scheme for
frustrated lattice models requires further clarification.

VI. CONCLUDING REMARKS

The Bell-Lavis model for liquid water has been compared
to its isotropic version: the antiferromagnetic Blume-Emery-
Griffiths model on the triangular lattice. The ground state
phase diagrams of the two models were shown to be topo-
logically identical, with fluid phases �gas and low- and high-
density liquids� being equivalent to magnetic phases �para-
magnet, antiferromagnet, and frustrated paramagnet�. Finite-
temperature effects have been considered by studying the
system in the interior of the sequential Husimi cactus. Phase
diagrams and maximum density lines in the high-density liq-
uid phase were compared for equivalent values of the re-
duced interaction strength in both models. The anomalous
features of the high-density liquid were shown to be very
similar, with lines of maximum density occurring at equiva-
lent pressures and temperatures. The stability of the LDL is
substantially enhanced in the BL model, as compared to the
BEG model. The larger LDL phase drives the anomalous
behavior into a metastable regime of the HDL phase. For the
isotropic BEG model, the line of maximum density, followed
by anomalous response functions, occurs in the stable re-
gime. The presence of these features in the BEG model
shows that the orientational character of the hydrogen bond
is unimportant for the anomalous behavior presented by the
BL model, as observed in previous studies of continuous
core-softened models �19,62,63�.

In both models, the density anomaly is accompanied by a
large rate of variation in entropy and number of �generalized�
hydrogen bonds per particle, and by anomalous behavior of
the thermodynamical response functions.

We propose to explain the anomalous behavior presented
by both models through a competition between two struc-
tured liquids. We suggest that this competition would arise
due to energetic frustration related to restrictions imposed on
the maximum number of bonds per triangle. We also propose
that energetic frustration, as a natural restriction for the for-
mation of favorable interactions, may be responsible for
anomalous liquid properties on lattices. Further studies on
different models and lattices �specially in three dimensions�
are being planned to test the possible relation between frus-
tration, density anomaly, and liquid-liquid phase transitions.
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